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Orthogonal Forward Selection and Backward Elimination
Algorithms for Feature Subset Selection

K. Z. Mao

Abstract—Sequential forward selection (SFS) and sequential backward
elimination (SBE) are two commonly used searchmethods in feature subset
selection. In the present study, we derive an orthogonal forward selection
(OFS) and an orthogonal backward elimination (OBE) algorithms for fea-
ture subset selection by incorporating Gram–Schmidt and Givens orthog-
onal transforms into forward selection and backward elimination proce-
dures, respectively. The basic idea of the orthogonal feature subset selection
algorithms is to find an orthogonal space in which to express features and
to perform feature subset selection. After selection, the physically meaning-
less features in the orthogonal space are linked back to the same number
of input variables in the original measurement space. The strength of em-
ploying orthogonal transforms is that features are decorrelated in the or-
thogonal space, hence individual features can be evaluated and selected in-
dependently. The effectiveness of our algorithms to deal with real world
problems is finally demonstrated.

Index Terms—Feature subset selection, orthogonal backward elimina-
tion (OBE), orthogonal forward selection (OFS).

I. INTRODUCTION

Selecting a subset of features from a pool of many potential variables
is a common problem in pattern classification. Quite often, data acqui-
sition process collects samples on a large number of variables when it
is unknown which specific ones are most important for class discrimi-
nation. The goal of feature subset selection is to identify and to select
the most important and nonredundant variables from the large pool of
potential variables. Generally, a feature subset selection algorithm in-
volves a feature evaluation criterion and a search algorithm. The eval-
uation criterion evaluates the capacity of feature subsets to distinguish
one class from another, while the search algorithm explores the po-
tential solution space. Based on the evaluation criterion used, feature
selection methods can be classified into filter and wrapper methods [1].
The wrapper method takes feature selection and pattern classification
as a whole and evaluates feature subsets based on classification results
directly, while the filter method employs intrinsic properties of data
such as class separability measures as the criterion for feature subset
evaluation. Because of its independence on classification algorithms,
the feature subset selected by the filter method can be used by any
classifier. In the present study, we evaluate feature subsets based on
Mahalanobis class separability measure (see, for example, [5]). After
selecting the evaluation criterion, we need to choose a suitable search
algorithm. Exhaustive search method guarantees to find the optimal so-
lution, but it has to evaluate all possible combinations of all variables.
Exhaustive search is rarely attempted in practice when features are to
be selected from a pool of many potential variables. Branch and bound
[2] algorithm and genetic algorithms [3], [4] can provide optimal fea-
ture subset without exhaustive search. But the two methods are still
computationally impractical if the pool of potential variables is large.
In practice, suboptimal search methods such as sequential forward se-
lection (SFS) algorithm and sequential backward elimination (SBE)
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algorithm (see, for example, [5]) are often employed. The drawback
of SFS and SBE is that once a feature is selected/deleted, it cannot be
deleted/re-selected at a later stage. As a consequence, redundant fea-
tures might be selected. To alleviate this problem, the max–min algo-
rithm [6], the plus-l–take-away-r (l � r) algorithm (see, for example,
[5]), and the floating search method [7] have been proposed. Owing to
the incorporation of the deletion/re-selection procedure, the (l� r) al-
gorithm and the floating search method have been found to be powerful
(see, for example, [8]).

The motivation of employing deletion/re-selection procedure in the
(l � r) and floating search algorithms is to reduce redundancy in the
feature subset, which is caused mainly by correlations or interactions
between candidate features. In the present study, we attempt to alle-
viate the redundancy problem by employing orthogonal decomposi-
tions. The strength of employing orthogonal decomposition is that fea-
tures are decorrelated in the orthogonal space and they can be eval-
uated and selected independently. The orthogonal transforms used in
our study are Gram–Schmidt transform and Givens transform (see, for
example, [9] and [10]). The reason of employing Gram–Schmidt and
Givens orthogonal transforms instead of the well known principal com-
ponent analysis (PCA) is that features in the Gram–Schmidt andGivens
orthogonal space can be made to associate with the same number of
input variables of the measurement space, while the PCA features are
linked with the full set instead of a subset of the input variables.

Thepresentstudyisorganizedasfollows.InSectionII,Gram–Schmidt
orthogonal transform is introduced, and an orthogonal forward feature
subset selection algorithm is developed. In Section III, an orthogonal
backward elimination (OBE) algorithm based on Givens rotation is
derived. Experimental studieswith realworld problems are presented in
Section IV. Concluding remarks are given in Section V.

II. ORTHOGONAL FORWARD SELECTION ALGORITHM FOR

FEATURE SUBSET SELECTION

A. Gram–Schmidt Orthogonal Transform

Suppose N samples x(1), x(2), . . ., x(N) are available,
and each sample is represented by an n-dimensional vector
x(k) = [x1(k); x2(k); . . . ; xn(k)]

T . Feature vector xi and feature
matrix X are defined as

xi = [xi(1); xi(2); . . . ; xi(N)]T

X = [x1; x2; . . . ; xn]=

x1(1) x2(1) � � � xn(1)

x1(2) x2(2) � � � xn(2)
...

...
...

...
x1(N) x2(N) . . . xn(N)

: (1)

The feature matrixX can be decomposed as

X = QR: (2)

R is an upper triangular matrix, andQ is an orthogonal matrix

R =

�11 �12 � � � �1n

�22 � � � �2n

. . .
...

�nn

Q = [q1; q2; . . . ; qn ] =

q1(1) q2(1) � � � qn(1)

q1(2) q2(2) � � � qn(2)
...

...
...

...
q1(N) q2(N) � � � qn(N)
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where qi is the new feature vector in the orthogonal space. In the
Gram–Schmidt orthogonal decomposition, the orthogonal matrixQ is
constructed using the following procedure (see, for example, [9]):

q1 =x1 (3)

qi =xi �

i�1

j=1

�jiqj (4)

where

�ji =

qTj xi

qTj qj
; for j = 1; 2; . . . ; i� 1

1; for j = i:

(5)

Equation (2) implements a mapping from space X to space Q: Q =
R�1X, and the feature vector qi (i = 1; 2; . . . ; n) can be interpreted
as sample distributions in the direction of feature qk in the orthogonal
space.

The quality of a feature subset can be evaluated based on its ability
to provide large class separation. A few criteria for class separability
measure are available such as the Mahalanobis distance measure. For
a two-class classification problem, the Mahalanobis distance measure
is defined as (see, for example, [5])

J(i; j) = [mi �mj ]
T
C
�1
ij [mi �mj ] (6)

wheremi = [m1i; m2i; . . . ; mni]
T is the mean vector of samples in

class i. Cij = Ci + Cj , and Ci and Ci are the covariance matrices
of classes i and j, respectively. In the orthogonal space, the covariance
matrix is diagonal

Cij = diag �21ij ; �
2
2ij ; . . . ; �

2
nij :

Hence, the class separability measure in the orthogonal space can be
decomposed as

J(i; j) =

n

k=1

(mki �mkj)
2

�2kij
: (7)

For multiclass problems, the average class separability measure can be
used as feature subset evaluation criterion

J =
2

L(L� 1)

L�1

i=1

L

j=i+1

J(i; j)

=
2

L(L� 1)

L�1

i=1

L

j=i+1

n

k=1

(mki �mkj)
2

�2kij

=
2

L(L� 1)

n

k=1

L�1

i=1

L

j=i+1

(mki �mkj)
2

�2kij
(8)

where L is the number of classes. By defining the average class sepa-
rability measure in the direction of qk as

Jk =
2

L(L� 1)

L�1

i=1

L

j=i+1

(mki �mkj)
2

�2kij
(9)

we obtain

J =

n

k=1

Jk: (10)

Equation (10) shows that the average class separability measure is the
sum of average separability measure in individual directions in the or-
thogonal space. The advantage of using orthogonal transform is that
features are decorrelated, consequently individual features can be eval-
uated and selected independently.

Next we investigate the link between features in the Gram–Schmidt
orthogonal space and input variables in the measurement space. Equa-
tions (3)–(5) show that the first k features q1, q2, . . ., qk in the orthog-
onal space are associated with the first k input variables x1, x2, . . ., xk
only. This property of the Gram–Schmidt forms the basis of our orthog-
onal feature subset selection method: features are first selected in the
orthogonal space, the physically meaningless features are then linked

back to the same number of input variables of the original measure-
ment space. But care must be taken when implementing this idea. If
the candidate features are simply orthogonalized in the order in which
they happen to be put in the matrixX, the important features in the or-
thogonal space are not necessarily sorted consecutively in the first few
columns of Q. As a result, the number of associated variables in the
original measurement space would be larger than the number of fea-
tures selected in the orthogonal space. For example, if feature qn in the
last column of Q is selected, it would be linked back to all variables
in the original space. This problem can be solved by making important
features first enter matrix X and Q using a sequential forward selec-
tion procedure. The combination of the orthogonal transform and the
sequential forward selection leads to the following orthogonal forward
feature selection algorithm.

B. Orthogonal Forward Feature Subset Selection Procedure

The orthogonal forward selection (OFS) algorithm that incorporates
forward selection into Gram–Schmidt orthogonal transform is summa-
rized as follows.

1) At the first step, consider all variables xi (i = 1; 2; . . . ; n) as
the candidate that first enters matrix X

q
(i)
1 = xi:

Compute Mahalanobis distance measures provided by q(i)1 , i =
1; 2; . . . ; n. The variable that yields maximum class separa-
bility, say xj , is identified and is added to the feature subset. Let
q1 = xj .

2) At the second step, consider all remaining n� 1 variables as the
candidate secondly entering matrix X

q
(i)
2 = xi � �

(i)
12q1 1 � i � n; i 6= j

where

�
(i)
12 = qT1 xi=q

T
1 q1

and compute corresponding Mahalanobis distance measures.
The feature that provides maximum class separation is identified
and is added to the feature subsets.

3) The above procedure is continued until the class separability
measure provided by the next best feature is less than a pre-spec-
ified threshold.

III. ORTHOGONAL BACKWARD ELIMINATION (OBE) ALGORITHM

FOR FEATURE SUBSET SELECTION

In contrast to the OFS algorithm, the OBE algorithm starts from
orthogonal decomposition of the full feature set. If the feature to be
deleted is in the last column of matrixQ, the degradation of class sep-
arability measure when it is deleted is simply

Jn =
2

L(L� 1)

L�1

i=1

L

j=i+1

(mni �mnj)
2

�2nij
: (11)

Hence, each feature can bemoved to the last column to findwhich leads
to the least deterioration in class separability measure after deletion.
Gram–Schmidt procedure can be used to perform orthogonalization
after each column exchange. But orthogonalization can be performed
in a more efficient way based on Givens transform (see, for example,
[9] and [10]).

A. Givens Transform

Consider the orthogonal decomposition

X = [x1; x2; . . . ; xn] = [q1; q2; . . . ;qn]R:

The degradation of class separability due to the deletion of the last
column of Q can be measured using (11). If each column in X is in
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Fig. 1. Comparison of SFS, (l � r) and OFS for Experiment 1.

turn moved to the last column, the corresponding degradation can be
computed. For example, if xi is exchanged with xn, the matrixX be-
comes

Xi$n = [x1; x2; . . . ; xn; xi+1; . . . ; xi]

= [x1; x2; . . . ; xi; xi+1; . . . ; xn] Ii$n

=XIi$n (12)

where Ii$n is the permutation of an identity matrix whose ith and nth
columns are exchanged. Substituting (12) into (2), we obtain

Xi$n = [q1; q2; . . . ; qn]RIi$n: (13)

Obviously, RIi$n is no longer triangular. To re-triangulate RIi$n,
we start from exchanging columns i and i+1. After column exchange,
we obtain

RIi$i+1 =

�11 �12 � � � �1i+1 �1i � � � �1n

�22 � � � �2i+1 �2i � � � �2n
. . .

...
...

...
...

�ii+1 �ii . . . �in

�i+1i+1 0 � � � �i+1n
. . .

...
�nn

:

(14)
The element �i+1i+1 ofRIi$i+1 can be reduced to zero by applying
Givens rotation to the ith and the (i+ 1)th rows ofRIi$i+1. Givens
rotation is an orthonormal transform which is defined as (see, for ex-
ample, [9] and [10])

g =
c s

�s c
(15)

where

c = �ii+1 �2
ii+1 + �2

i+1i+1

s = �i+1i+1 �2
ii+1 + �2

i+1i+1

: (16)

A full transformation matrixG is defined as

G = diag f1; . . . ; 1; g; 1; . . . ; 1g (17)

which is also orthonormal. Hence, we have

Xi$i+1 = QRIi$i+1 = QG
T
GRIi$i+1: (18)

Equation (18) shows that only two Givens rotations are needed in order
to obtain the orthogonal decomposition ofXi$i+1: one rotation is ap-
plied to columns i and j of matrix Q, and another rotation is applied
to rows i and j of matrix RIi$i+1.

To obtain orthogonal decomposition of Xi$n, we can in turn
exchange xi with xi+1, xi+2, . . ., xn, and perform Givens rotation
after each exchange. Suppose we have obtainedQ andR by applying
Gram–Schmidt orthogonal decomposition to the full feature matrix
X, the procedure of orthogonalizing Xi$n using Givens transform
can be summarized as follows.

1) At the first step, exchange xi with xi+1, and calculate param-
eters c and s of Givens rotation matrix using (16). Then apply
Givens rotations to the ith and (i+1)th rows ofRIi$i+1 and the
ith and (i + 1)th columns of Q. Take matricesXi$i+1,QGT

andGRIi$i+1 as newX,Q, andR, respectively.
2) At the kth step, exchange xi+k�1 with xi+k , calculate c and s

of Givens rotation, apply the rotation to rows i+k�1 and i+k

of RIi+k�1$i+k and columns i + k � 1 and i + k of Q, and
denote Xi+k�1$i+k , QGT and GRIi+k�1$i+k as new X,
Q, and R, respectively.

3) The above procedure is continued until k = n � i.
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Fig. 2. Comparison of SBE, (l � r), and OBE for Experiment 1.

B. Orthogonal Backward Elimination Feature Subset Selection
Procedure

The OBE algorithm that combines Givens transform and sequential
backward elimination algorithm can be summarized as follows.

i) Initially, all variables available are used to form the full feature
matrixX and QR decomposition is performed using (3)–(5).

ii) At the first step, column n � 1 of matrix X is first exchanged
with the last column. Givens rotation is then applied to obtain
newQ andR. Denote the degradation of class separability mea-
sure after removing the last column as J1.

iii) At the kth step, column n � k of matrix X is exchanged with
the last column. Givens orthogonalization procedure Steps 1)–3)
in Section III-A is then used to obtain newQ andR. The class
separability measure degradation after removing the last column
is denoted as Jk.

iv) Step iii) is continued until k = n�1. The variable that results in
minimum degradation to class separability measure after dele-
tion is identified and is discarded. Set n = n � 1.

v) Repeat Steps ii)–iv) until the degradation of class separability
measure resulted from the deletion of the next least important
feature is larger than the pre-specified threshold.

IV. EXPERIMENTS

The OFS algorithm and the OBE algorithm are developed to reduce
redundancy in the selected feature subset. We have done a few experi-
ments, and the results show that if correlations between candidate fea-
tures are trivial, employing orthogonal transform does not make much
difference; but orthogonal algorithms provide improvements if severe
correlations exist.

A. Experiment 1

In the experiment, a hyperspectral data band selection problem was
used to test the effectiveness of our algorithms.

Spectral imaging, which divides the ultraviolet, visible and infrared
spectra into distinct bands for imaging, has become available in recent
years. A typical hyperspectral sensor like the airborne visible/infrared
imaging spectrometer (AVIRIS) is able to provide 224 contiguous spec-
tral bands within the range of 0.8–2.4 �m, with a spectral resolution
up to the order of 10 nm [11]. With this kind of fine spectral resolu-
tion, hyperspectral imaging provides necessary information for precise
studies of objects and substances. Hyperspectral imaging has become
an important tool in remote sensing and biomedical engineering [12]
etc. Despite the advantage of having a fine spectral resolution, the high
dimensionality of hyperspectral data can present problems to pattern
classification. Dimensionality reduction is therefore an important issue
in hyperspectral data classification. In [13], a projection pursuit method
was proposed. In [14], the principal component analysis (PCA) formul-
tispectral image classification was discussed. Both methods achieve
massive reduction in dimensionality, but the features provided do not
retain their original physical meanings.

In the present study, we use feature subset selection method to re-
duce dimensionality so that features selected retain their original phys-
ical interpretations. The problem under study is to classify five kinds of
mineralswhich areHematite,Montmorillonite,Muscovite,Olivine, and
Topaz.The reflectance data of thesemineralswere downloaded from the
USGS Spectral Lab [15], where reflectance at 480 bands were provided
in the spectra rangeof 0.2–3�m.Thenumber of samples of eachmineral
are 12, 10, 13, 17, and 18, respectively. These are the only minerals that
ten or more samples were provided by the USGS Spectral Lab.

The number of bands (features) available is 480, which is very large.
Spectral band selection was performed first. For comparison reasons,
we ranked features using SFS algorithm, (l � r) algorithm and OFS
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Fig. 3. Comparison of SFS, (l � r) and OFS for Experiment 2.

Fig. 4. Comparison of SBE, (l � r) and OBE for Experiment 2.

algorithm respectively. For (l� r) algorithm, l and r were set to 2 and
1, respectively. After feature ranking, a linear least square estimation

algorithm was used to perform classification. Leave-one-out method
was employed to evaluate classification error rate, and the results are
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shown in Fig. 1. From Fig. 1 we can see that OFS achieves lower error
rate than SFS and (l � r) if the same number of features are used.
On the other hand, OFS demands less features than SFS and (l� r) to
achieve the same classification error rate. The improvement is owing to
the reduction of redundancy by the orthogonal transform. It should be
pointed out, however, that OFS demands more computations than SFS
and (l�r) algorithms due to the orthogonal decomposition involved. In
addition, when more features, say 50 features, are used, feature subsets
provided by the three methods tend to provides the same classification
results.

Due to the large number of candidate features, intensive computa-
tions would be demanded if backward elimination algorithms are ap-
plied to the dataset directly. In our experiment, the dimensionality of the
dataset was first reduced from 480 to 50 using the sequential forward
selection algorithm. OBE, SBE, and (l�r) feature selection algorithms
were then performed based on the reduced data. The leave-one-out
cross validation classification error rates of the linear least square es-
timation classifier are shown in Fig. 2. Again, employing orthogonal
transform is advantageous.

B. Example 2

In this example, wine dataset from UCI Machine Learning Reposi-
tory [16] was used to test the effectiveness of our algorithms. The wine
data are the results of a chemical analysis of wine grown in the same
region in Italy but derived from three different cultivars. The dataset
contains 178 samples that belong to three classes, respectively.

In the wine dataset, each sample is represented by 13 numerical vari-
ables, some of which are insignificant for class discrimination. Feature
selection was therefore selected first. For comparison, we ranked fea-
tures based on the SFS algorithm, (l � r) algorithm, OFS algorithm,
SBE algorithm, and OBE algorithm, respectively. For the (l� r) algo-
rithm, l and r was were set to 2 and 1, respectively. After feature subset
selection, the linear least square estimation algorithm was used to clas-
sify the 178 samples, and the leave-one-out cross validation error rates
corresponding to the five algorithms are shown in Figs. 3 and 4, respec-
tively. Obviously, the orthogonal feature selection algorithms achieved
good results compared with the sequential forward selection algorithm,
the sequential back elimination algorithm and the (l� r) algorithm as
well. However, the improvement is limited due to minor correlations
between candidate features in this example.

V. CONCLUSION

In the present study, we have proposed two feature subset selection
algorithms by incorporating orthogonal transforms into the sequential
forward selection and backward elimination procedures. The orthog-
onal feature subset selection algorithms are particularly powerful for
problemswith severe correlations among candidate features. The effec-
tiveness of our algorithms has been tested using real world problems.
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Analysis of the Weighting Exponent in the FCM

Jian Yu, Qiansheng Cheng, and Houkuan Huang

Abstract—The fuzzy c-means (FCM) algorithm is one of the most fre-
quently used clustering algorithms. The weighting exponent is a param-
eter that greatly influences the performance of the FCM. But there has been
no theoretical basis for selecting the proper weighting exponent in the liter-
ature. In this paper, we develop a new theoretical approach to selecting the
weighting exponent in the FCM. Based on this approach, we reveal the re-
lation between the stability of the fixed points of the FCM and the data set
itself. This relation provides the theoretical basis for selecting the weighting
exponent in the FCM. The numerical experiments verify the effectiveness
of our theoretical conclusion.

Index Terms—Fixed point, fuzzy c-means, Hessian matrix, weighting ex-
ponent.

I. INTRODUCTION

THE fuzzy c-means algorithm (FCM) is a popular fuzzy clustering
method. Many of its applications are indicated in [1]. One of the most
important parameters in the FCM is the weighting exponentm. When
m is close to one, the FCM approaches the hard c-means algorithm.
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